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In  this paper a reservoir connected through a horizontal contraction to a channel 
is considered. Both the reservoir and the channel are considered to contain a 
stable multi-layered system of fluids. The conditions under which there is a flow 
in only one layer, and the depth in this flowing layer decreases continuously 
from its depth in the reservoir to its depth in the channel, give the maximum 
discharge that can be obtained with a flow only from this single layer. For this 
case the volume discharge calculations are carried out at a single section (the 
section of minimum width). Where there are velocities in only two layers and the 
depth in each of these layers decreases continuously from their depths in the 
reservoir to their depths in the channel, the theory involves computations at two 
sections in the flow. These are the section of minimum width and a section up- 
stream of the position of minimum width (the virtual point of control). For this 
flow it is shown that the solution is the one in which the velocity and density 
distributions are self similar and that the depths of the layers at  the point of 
maximum contraction are two-thirds of those far upstream. It is then shown that 
for any stable continuous or discrete density stratification in the reservoir a self 
similar solution will satisfy the conditions for the depths of the flowing layers to 
decrease smoothly from the reservoir to downstream of the contraction. Again 
the ratio of the depth at the contraction to that far upstream is two-thirds. 

When there is a very large density difference between the fluid in the lower 
dead water and that in the lowest flowing streamline then this streamline 
becomes horizontal and may be considered as a frictionless bed. The flow when 
the bed is not horizontal but where there is a small rise in the channel at the 
position of maximum contraction is considered for the case where two discrete 
layers flow under a volume of dead water. In  this case the velocity and density 
profiles are not self similar. 

Experiments have been carried out with a contraction in a flume for the 
withdrawal of two discrete layers from a three layer system and the withdrawal 
from a fluid with a linear density gradient. I n  both cases the reservoir and 
channel bed and hence the lowest streamline was effectively horizontal. These 
experiments confirmed the theoretical predictions. 

1. Introduction 
The problem of the selective withdrawal of a fluid of known density from a 
stably stratified fluid in a reservoir is one of obvious practical importance and 
this paper makes a contribution towards the understanding of this problem for 
the case where the fluid is continuously stratified or consists of more than two 
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discrete layers. In  a natural reservoir vertical density gradients may arise from 
variations in temperature, dissolved salt content, and suspended sediment loads. 
In  a number of these situations it is important to withdraw fluid of known 
properties and the relationship between the properties of the discharged fluid 
and the rate of discharge is required. 

In  power station cooling ponds, control structures are designed so that only 
the coolest water is used. In  this case the pond most frequently consists of two 
distinct layers and it is therefore not surprising that the first investigations were 
for the withdrawal of one layer from a two layer system. Craya (1949) considered 
the case of a horizontal line sink located a distance above an interface between 
two fluids. Then using the method of conformal transformation he was able to 
obtain the discharge below which the fluid in the lower layer remained stagnant 
in terms of a critical Froude number. Craya’s calculation agrees with the ex- 
perimental results obtained by Gariel (1949). 

Harleman, Morgan & Purple (1959) have performed similar experiments for 
the axisymmetric case with a sink at  the bottom of a large tank containing two 
fluid layers. In  a similar fashion the results they obtained for the discharge below 
which the upper layer remained stagnant can be expressed in terms of a critical 
Froude number. In  both of the above cases the velocity distributions in the 
flowing layer far upstream from the sink were uniform. 

Where the fluid is stratified in more than one layer or is continuously stratified 
the problem is more difficult. When the reservoir is of limited horizontal extent 
some of the fluid layers have a limited volume and thus as withdrawal takes place 
the upstream conditions change and hence the flows must be time dependent. 
For the case of a reservoir of effectively infinite horizontal extent and of a given 
density variation at infinity, then, if the discharge is fixed it is not known 
whether the withdrawal is from a relatively deep layer with a small velocity, 
or from a shallow layer with a higher velocity. Further, the velocity distribution 
at infinity is not known. 

For the case where viscous effects limit the flow and where the fluid is weakly 
stratified with a linear density gradient Koh (1966) obtained a solution in which 
the velocity and density profiles were self similar both for the axisymmetric 
and the two-dimensional cases. The two-dimensional case was treated as a quasi- 
steady flow and for this case experiments conibmed the theoretical predictions. 

Yih (1965, 1958) examined the two-dimensional flow of a stratified fluid into a 
line sink which is between two horizontal planes. He assumed that the density 
gradient far upstream was linear and that the velocity distribution far upstream 
was given by [ p ] h  equals a constant (where p is the density of the fluid and u is its 
horizontal velocity). He points out that ‘if the flow issues horizontally from a 
large reservoir [ p ] h  is indeed a constant ’. With this boundary condition and 
assuming an inviscid fluid a complete solution was obtained in terms of an up- 
stream Froude number for Froude numbers of greater than l /n .  Kao (1965) has 
recently extended this approach to Froude numbers of less than l/n. 

When a reservoir containing a stably stratified fluid is connected to a channel 
and a band of this stratified fluid is withdrawn (the remaining portions of the fluid 
being stationary) then it will be shown that gravitational effects are important 
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in the region between the reservoir and the channel. These effects cause a velocity 
distribution in the channel which is significantly different from that described 
above. 

Ideally, we would like to be able to solve the problem of the withdrawal from a 
point sink situated in an infinite reservoir containing fluid with an arbitrary 
stable stratification. That is, given a withdrawal rate we need to  know the 
velocity distribution at  a distance from the sink in order to estimate the density 
of the fluid that is being withdrawn. This general problem has to date proved 
intractable. However, a solution can be obtained when the fluid is withdrawn 
through a smoothly contracting channel in which there is a definite minimum 
width (figure 1 ) .  For this case it is reasonable to make the hydrostatic approxima- 
tion and to use arguments that are extensions of the one-dimensional ones used 
in the one layer systems of open channels. The withdrawal through the contrac- 
tion of fluid from two adjacent layers of a multilayer system is the simplest case 
and will be considered first. 

It is important to note that the theory considers steady flows only and these 
would be difficult to obtain in a practical situation. However, the theory should 
be satisfactory provided that the reservoir is sufficiently large so that the time 
for a particle to travel through the contraction to the outlet is short compared 
to the time for the streamline patterns to change due to the withdrawal of fluid 
from the reservoir. 

2. The case of two flowing layers 
Consider the system illustrated in figure 1 .  It is required to find the conditions 

under which there is a flow only in layers 1 and 2 and the depths in these layers 
decrease smoothly from their depths in the reservoir to their depths in the 
channel. Below and above these layers, the fluid is stationary and may consist 
either of fluid of a single density or a multilayer system of fluids. Consider the 
fluid above and below the flowing layers to be of a constant density. 

Let the density of layers 0 , 1 , 2 , 3  be pa, p1 = pa + Apl,  p ,  = po + Ap, + Ap, and 
p3 = po + Apl + h p ,  + Ap,, respectively and the depth in the reservoir of the 
layers 1 , 2 , 3  be Yl, y2 and Y3. Further let the depths of the layers at  any point in 
the contraction be y l ,  y, and y3  and velocities and discharges in layers 1 and 2 
be vl, v2 and Q1, Q, respectively. Then the respective Bernoulli equations for the 
flowing layers may be written as 

and the condition that there is no flow in the lowermost layer is 

AP3 

14-2 
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If we define a,, = Ap,/Ap,,YA= Y,/q,  y;  = yJY1 and use equation (3)  to 
eliminate y3 then (1) and (2) become 

/' 
/ 

/ 

Infinite reservoir Withdrawal area - 
4 Q---.-...-- .-.- 

Plan 

I 

--x o l  + x  

v 
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I 

Elevation 
FIGURE 1. The two layer system. 

where b is thdchannel width and 

A = ( 1 + a 2 3 ) / ( 1 + a 1 3 + a 2 3 ) ,  

B = 1/( 1 + a13 + a2317 

= %2/(' a23)7 

= ( l  +a12)/(1+a13fa23)* 

If Q1, Q2 and the conditions at  infinity (Y;, A ,  B, C and D )  are known, then 
(4) and (5) determine y ;  and y ;  in terms of b at every 2. However, as b decreases 
smoothly from its large value a t  minus infinity to its minimum and then increases 
again it is required that the depth of each layer continuously decrease at  a 
finite rate. This determines the possible flow. It is therefore appropriate to 
examine the conditions for which dy; /dx  and dy;/dx are always finite. Differentiat- 
ing (4) and ( 5 ) ,  defining 
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and solving for dy;/dx and dyL/dx, we obtain 

dy; 1db D, 
dx b dx D,’ 
- - 

dyh 1 d b  D, 
dx bdxD,’ 
- - - 

where D,= ( A  - F:) ( D  - Fg) - BC, 

Now for smooth transition it is required that D, does not equal zero unless 
dbldx equals zero (the point of control) or D, and D, equal zero. It is worth 
emphasizing that the condition D, and D, equal zero together (the point of 
virtual control) implies that D, also equals zero. It is these two conditions which 
ultimately enable the relationships between Q,, Q, and &, yZ 

I 

--co 

- X  X 

Virtual control point 

to be obtained. 

+a 

(point of maximum contraction) 

FIGURE 2. The points of control for a two layer system. 

Now consider the variation of the determinant D,. In  the reservoir, B’: and F i  
will tend to zero and hence D = A D -  BG = 1 / ( 1  +a13+a2,) is positive. Far 
downstream F: and F: will tend to large positive values and hence D, is again 
positive. Now it can be shown that when b(x) has only one minimum the graph 
of D, versus x has only one turning point and that for the case where dyildx and 
dy.!Jdx are both negative then dD,/dx at the position of minimum width is positive. 

Thus the graph of D, versus x is as in figure 2 and the equation 

D, = 0 (8) 

holds at  the section of minimum width and at  some section upstream. This latter 
section will be called the point of virtual control and in order that dyilclx and 
dy@x be finite a t  this section then from (6) and (7)  

D, = 0, 

D, = 0. 
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Equations (9), (lo), (4) and (5 )  may be solved for the four unknowns &,/byl, 
&,/by,, y; and y;. These equations are solved using c2 = (v,/v1)2, q5 = pv",2AplgY,, 
y; and y; as the variables and eliminating y; and y; from equations (4) and (5) and 
substituting into equations (9) and (10). If pZ1 is defined as p2/p1 then the solu- 
tions are 

(13)  +=--.-a- 1 P1 v: ( A  +BY;) (AD - BC)Yi 
2 Ap, g & - (AD - BC)Y; + 2( C + DY;) ( A  + BY;) ' 

2(C + DY;) ( A  +BY;) y; = ____ 
(AD-BC)Y;+2(C+DY;)(A +BY;) 

(AD - BC)Y;I 
(AD - B q Y ;  + 2(C + DY;) ( A  +BY;) 

and y; = Y;+ 

This completes the calculations at the virtual control point and it is worth 
noting that these equations have determined the velocities and depths, and hence 
the ratio of the discharge may be calculated from (4), ( 5 ) )  ( 1 2 )  and ( 1 3 ) .  These 
yield 

( 1 6 )  

and since the flow is steady this discharge ratio does not change with x .  It must 
be noted, however, that position of the virtual control point is as yet unknown. 
Further at the section of minimum width dbldx equals zero and hence (8) must 
be satisfied. Thus using (4) and ( 5 )  to eliminate F: and FE, equation (8) becomes 

(17) 
+D(3Y;-2Y;)l = BC 

Y;& 

and the simultaneous solution of these two equations yields, in addition to the 
solutions obtained a t  the virtual control point, y; = $, y; = +Y; and 

These pairs of values of y; and y;1 then give the two solutions to (8). It now only 
remains to calculate the ratio of the width at  the virtual control point to the 
width at  the point of maximum contraction. This may be done by using the 
continuity equation for either layer and leads to 

(18) 

where b, i s  the width at point of virtual control and b,  is the minimum width. 

- b, = (-) 1 $ [Y; (AD-  BC) + 2(C + DY;) ( A  +BY;)]$ (1 + + Y,)B 
b, 3 (AD- BC)+ ( A  +BY$ (C + DY;) (Y;)* ( 1  + cCl3 + a,,)+ ' 



Selective withdrawal from a stably stratified Jluid 215 

Substitution of the solution for the layer depths at the position of the maximum 
contraction into the Bernoulli equations yields for the discharge in each layer 

The most remarkable result that has come from the above calculations is that 
at both the virtual point of control and at the position of minimum width (the 
main control) the ratio of the layer depths is the same as that at infinity. 
Furthermore, the ratio of the velocities in the layers at  both points is also con- 
stant. This implies that the two layers are behaving as if they were a single layer 
with a composite density. In view of this it is not surprising that the depths at  
the position of minimum width should be two thirds of those in the reservoir. 

The constancy of velocity and depth ratios implies that the velocity and 
density profiles when plotted non-dimensionally are similar at  all points. This 
suggests that for any density distribution in the reservoir we might expect the 
velocity and density profiles in the flowing layer to be self similar. Indeed it is a 
relatively simple matter to show that for any density stratification in the reser- 
voir a solution with self similar velocity and density profiles satisfies the condi- 
tions for a layer of smoothly decreasing depth to flow from the reservoir through 
the contractiont ( 3  3). It is also worth noting that (i) no Boussinesq type approxi- 
mation has been used in obtaining these results and hence they should hold for 
large density differences; (ii) by making the density difference between layers 
( 2 )  and ( 3 )  tend to infinity then the streamline between these layers effectively 
becomes a frictionless level solid boundary. 

Further the virtual point of control can be interpreted in the same manner as 
is a normal control in open channel flow. At the normal control the velocity of a 
kinematic or a gravity wave tends to zero. In  a two layer system two wave modes 
are possible. It is a simple matter to show that a t  the point of control (i.e. the 
point of minimum width) the velocity of the first wave mode becomes zero and 
the velocity of the second wave mode is negative; while at  the point of virtual 
control the veIocity of the second wave mode is zero and that of the first is 
positive. 

3. The solution for an arbitrary density gradient 
Consider a reservoir containing a fluid with a known arbitrary density gradient 

which may be either a continuous or a discontinuous function of depth. Let the 
reservoir be connected to a narrow channel as in figure 3. When withdrawal 
takes place the uppermost and lowermost streamlines will respectively drop 
down and rise up to the outlet as in figure 3. The wedge shaped regions caused 
by this change in the constant density lines (the streamlines) will be filled by 
fluid with a density closest to the density of the outermost streamlines of the 

t Benjamin (1967) obtains this similarity solution in a completely different manner. 
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flowing layers. Now, provided the reservoir area is large and the volume in these 
wedge-shaped regions is relatively small then the fluid filling each of these 
regions will come from a relatively small range of depth in the reservoir. Thus, 
provided the density variation over each small range of depth is not too large, the 
fluid in both the upper and lower wedge shaped regions can be regarded as of 
approximately constant density. This implies that the uppermost and lower- 
most streamlines can be considered as lines of constant pressure. 

A 

\ 

Lower boundary of still fluid ( y  =~ (x )Sy , ( x ) )  

Y B Free surface V 

x =  -a 0 x =  +m 

Reservoir Narrow channel 
A B 

A\\\\\\ Constant density still fluid (p,) 

I////, Constant density still fluid (po+Ap) 

Elevation 

Density - 
Section A-A 

- -  

Density - 
Section B-B 

FIGURE 3. The case of an arbitrary density gradient. 

Now let the density of the fluid on the streamline which is the upper boundary 
of the lowermost dead water be po + Ap and let the position of this boundary a t  
x = - co and x be given by P and y(x) respectively. Then below y = F the density 
distribution will be unchanged by the flow and as discussed above the density in 
the lower wedge-shaped region defined by 7 d y < g(x) will be po + Ap. Similarly, 
let the density of the fluid on the streamline which is the lowermost boundary of 
the upFer dead water be po and let the streamlines position at x = - co and at x 
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be given by 7 +Yo and g(x) +yo (x) respectively. Then the density of the fluid in 
the upper wedge defined by g(x) + yo (x) 6 y < 7 + & is po and above y = 7 + Yo 
the density distribution will be unchanged. 

Consider a streamline within the flowing layer. Let its position at  x = -a 
and x be respectively 7 + Y and y(x) + y(x) and let the density on this stream- 
line be po+Ap,. Let the velocity on this streamline be v,(x). 

It is remarkable that a solution exists in which the distribution of density and 
velocity are self similar. Let the distribution of density at  all sections have the 
form 

where 7 = y/yo and f (7) is determined by the upstream density distribution. 
Now the flow is steady and the density is constant along a streamline so the 
constancy of the non-dimensional form of the density distribution implies that 
for any streamline 

Now for the constant pressure on - XOX (figure 3) we have 

(21) YIYO = Y/&. 

1 

Hence Y(x) = [ Y o - Y o ( ~ ~ I ~  0 f ( r ) d 7 +  7. (23) 

Further, Bernoulli's equation for a streamline in the flow gives 

(24) 
and this becomes 

This then is'the velocity distribution in terms of the density distribution for a 
similarity solution. It remains to determine the conditions under which this flow 
will go through the contraction. 

Now let Q be the total discharge below the streamline defined by y = y(x) + y(x). 
Then the velocity on the streamline v, may be written as 

1dQ 1 dQ v =--=-- 
I/ bdY bYod7 

and this may be substituted into (25). The equation is then differentiated with 
respect to x and since the flow is self similar, dQ/dy is independent of x and the 
equation becomes 

When dbldx equals zero then either dyo/dx equals zero or yo = +%. As we are 
looking for a solution with dyo/dx finite and yo continuously decreasing, it is only 
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the second condition that is relevant. If now the Boussinesq assumption is made 
then the discharge is given by 

It is important to note that a continuously varying density stratification 
results in an infinite number of wave modes. Thus there are an infinite number of 
sections which are points of virtual control. The solution above is therefore the 
one which satisfies the condition that dyo/dx is finite and negative at  all of these 
points of virtual control. 

4. The two-layer system and the departures from the self similar solution 
It has already been noted that if the density difference between the lowest 

flowing layer and the underneath stationary fluid tends to infinity then this 
lowest streamline effectively becomes a solid horizontal bottom; it is now pro- 
posed to discuss this case further. 

For the two-layer system there are two control points, one at  the point of 
minimum width and one virtual control point further upstream and all the 
discharge calculations deal with values at  these points. It is therefore possible to 
alter the geometry of the channel bed upstream of the virtual control point or 
downstream of the position of minimum width without affecting the flow through 
the contraction.That is, if before the virtual control point the reservoir is deepened 
and downstream of the point of minimum width the channel is steepened then 
the basic solution is unchanged and the flow becomes that of a two-layer system 
over a broad crested weir. With an increase in the number of layers the number 
of points of control increase and the broader the weir must become if the 
similarity solution over the weir is not to be disturbed. 

Consider now the case of the flow of a two-layer system over a contracted weir 
with a relatively narrow crest. Here the point of virtual control will not fall on 
the same level as the crest. It would be most useful to be able to compute the 
discharges through this contracted weir for given upstream conditions and a 
given weir geometry. However, the amount of algebra involved in this type of 
calculation is formidable. The method in 0 2 can, however, be used to obtain this 
information provided the discharges for the given upstream conditions are 
assumed to be those for the case where there is no weir in the contraction, and 
the weir geometry is treated as the unknown. 

Define the vertical distance from a datum to the channel or reservoir bed as 
h(x) and let h'(x) be h(x)/Y,. If at the section of maximum contraction dhldx is 
zero, then from the differentiated Bernoulli's equation it can be shown that (8) 
again gives the conditions for the flow through the contraction to be smooth. 
However, the conditions that dy;/dx and dyh/dx are finite a t  the point of virtual 
control where equation (8) also applies are 
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and 1-F! 

a12 

dh’ + 

ax 

dh’ + 

ax 

-- 

-- 

F - -  2 Y W  
b dx 

.p2%- ’ db 
b dx 

= 0. 

Now let it be assumed that the virtual control section occurs on a length of 
channel where the bed is level. Further let the level of this horizontal bed be 
taken as the datum from which all heights are measured. The equations at this 
virtual control point then reduce to those already solved, that is 

It now remains to satisfy the conditions at the position of the minimum width. 
Solving for y; and y; in terms of 9 and c from Bernoulli’s equations then the ratio 
of discharges at  all points in the reservoir and at  the position of maximum con- 
traction may be written as 

where 6 = Y;; - hk and hh is the maximum value of h‘(x). Further let the value of 
c at the point of virtual control be E and define c* = c/C, then the expression for q5 
that can be obtained from (30) is 

Again using the expressions for yk and y; obtained from the Bernoulli equations, 
(8) becomes 

Define pZlC2 = E; and substitute for 9, then equation (32) becomes 

8[-C$~2p.12+C*(3+a,2)]-c;a12c3*+.12C*- 2Y;; 
B[ - c3C;a,,+ c* (1 + a,J] - 3;a1,c3, + c*a12 

X 

e[2a1,~2p~3,- ( i+a,,)a, ,~C:~;++~(i +01,,)21 

(33) 
- @iY&12 (3 + ~ 1 2 )  +Y;a12 (1 + ~ 1 1 2 )  = a12. 

8[ - c2,C;Y; +Y;; (1 + 4 1  + Y;.,, - $c2, Y; 

If c* a t  the position of minimum width is assumed known, then the above equation 
is a simple quadratic and may be solved for 8. For a given c* the two solutions 
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for 8, represent a very small drop, and quite a large rise in bed level at the contrac- 
tion. The latter case is physically more interesting. Once this value has been 
determined, values of y;, yk and q5 at the position of minimum width can be 
calculated from the Bernoulli equations and (31). Finally, using the equation of 
continuity the width at the contraction can be computed. The calculations 
can be carried out until the width a t  the contraction equals that a t  the point of 
virtual control. 

1.00 

0.90 1. 
* 
ti 

0.70 

0.60 

-+ h7n 
F I G ~ E  4. The characterktics of the flow of a two-layer system through a narrow crested 

contracted weir. p z l  = 1, alZ = 1, Ya = 1. 

For the case where pzl equals one (this is equivalent to the Boussinesq assump- 
tion) and for upstream conditions of Yk = 1 and aI2 = 1 the ratios of the mini- 
mum width to that a t  the virtual control points, y;, yk and q5 are plotted against 
the height of the rise in contraction, in figure 4. 

It seems likely that this method can be extended to systems containing more 
than two flowing layers but the amount of algebra involved increases con- 
siderably. 

5. Experimental verification 
A number of preliminary experiments were carried out in a 365 x 7.5 x 10 em 

closed tunnel for the case where the lowermost streamline was a solid boundary. 
The tunnel could be tilted about an axis parallel to the 7.5 em dimension and in 
order to reduce the length of interface over which mixing was possible the 
tunnel was always filled in the tilted position. A horizontal contraction was 
placed in the tunnel and a plan of this contraction is shown in figure 5. In  every 
case salt in water was used to obtain the required density differences. For the 
layered case the tunnel was filled at a very slow rate and the central layer was 
dyed. For the case of the linear density gradient the method of filling used was 
that describedby Oster (1965). After filling, patches of dye were injected through 
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nozzles in the roof of the tunnel. The tunnel was then slowly lowered into a 
horizontal position. In  both cases negligible mixing was caused by this slow 
lowering and in the case of the linear density gradient the patches of dye were 
stretched giving fine horizontal lines of dye. Air holes were then opened on the 
top of the tunnel and sufficient fluid was withdrawn from the 7-5 cm x 1 mm 
slit a t  the outlet end of the tunnel so that the fluid within the tunnel had a free 
surface. Sufficient time was then allowed for all the velocities within the tunnel 
to decay and then the experiment was started. 

y y  ;' slit 

60cm - 4 - 3 3 c r n -  200cm 4 

' 1  cm 
FIGURE 5. Plan of the signifcant dimensions of the main contraction (a second contraction 

was used and this had a minimum width of 2 cm). 

Withdrawal commenced and the discharge was measured with a rotameter 
and was maintained at a constant value throughout the experiment. Photographs 
were taken at frequent intervals and from these the depths of the layers in the 
upstream portion of the channel and at the point of maximum contraction were 
obtained. 

The case of the flow with an originally linear density gradient was the easier to 
analyse. In  this case as the upstream boundary conditions gradually changed the 
number of dye lines with a shape indicating a flow through the contraction in- 
creased (figure 6, plate 1). As each dye streak changed from its originally hori- 
zontal position to one indicating a flow through the contraction and out of the 
sink it induced small velocities in the region above it. These were not associated 
with the flow through the contraction but were necessary to form the wedges of 
constant density fluid above the flowing region. These velocities were small 
enough not to affect the measurements of depths but made measurements taken 
from the vertical dye streaks (figure 6) of doubtful value. 

Now for each streamline which indicated a smooth flow through the contrac- 
tion, theory shows that the ratio of its depth at  the position of minimum width 
to its depth in the upstream reservoir should be ?g. In  each photograph of the 
experiment a different number of the originally horizontal dye streaks indicated 
streamlines which flowed smoothly through the contraction. For each of these 
dye streaks the ratio of the depth at the contraction to that far upstream was 
computed. From six of the photographs taken approximately 5 sec apart 26 
separate measurements of the ratio were made and gave a mean and a standard 
deviation of the mean of 0.65 

The interpretation of the experiments with a discretely layered system was 
considerably more difficult. If the valve was slowly opened then the lowest layer 
commenced to flow. As it was opened still further there was flow in the lowest 
two layers and finally when the valve was opened still further the discharge 
came from all three layers. There was obviously a range of discharges at  which 

0.01. 
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there are flows in the lower two layers only but the theory indicates that there is 
only one discharge at  which there is flow in only the lower two layers and the 
depths of the layers decrease continuously from their reservoir depth to the 
channel depth. For this discharge the flow is controlled at and upstream of the 
channel contraction. When the discharge is less than this critical discharge there 
appears to  be a weak internal hydraulic jump downstream of the contraction 
and the control at the contraction is effectively drowned. When the discharge 
was greater than the critical one then withdrawal has commenced from the 
uppermost layer. 

The time taken for the system to react to valve changes compared to the time 
for change in the upstream reservoir made it inappropriate to operate an experi- 
ment as described above. 

The discharge was therefore held constant throughout each experiment and the 
slow changes in the upstream condition caused slow changes in the flow through 
the contraction. When flow commenced in the middle layer the weak hydraulic 
jump was observed but as the upstream conditions slowly changed, the jump 
moved downstream and its downstream depth decreased. Depth measurements 
were taken when the downstream depth of the hydraulic jump (yl + yz) was less 
than 0.7 times the upstream reservoir depths (Y, + YJ. At this stage the velocities 
in the uppermost layers were small enough not to affect the depth of flow at the 
contraction and a comparison with open channel flow measurements suggested 
that the jump would no longer control the flow. The experiments were carried 
out with the density ratio a12 ranging from 1 to 0.25t and an upstream depth 
ratio ranging from 1 to 4. These yielded ten measurements giving a mean and 
the standard deviation of the mean of 0.65 

In  all of the experiments there were small time dependent effects and small 
circulations were set up in the overlying fluid. These circulations were caused by 
(i) the flow into the wedge of constant density fluid (figures 3 and 6) and (ii) the 
effect of viscosity. Because of these small circulations no serious attempt was 
made to measure velocity distributions within the system. However, observa- 
tions with dye streaks did indicate the correct trends in the velocity distributions. 
All of the above effects could be minimized by using larger equipment and further 
experiments are planned. 

The effects do not greatly affect the measurements of the depth and the agree- 
ment between theory and experiment must be regarded as satisfactory. 
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t If the well verified case of a uniform fluid is included, this density ratio range is from 
03 to 0.25. 
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FIGURE 6. Photographs taken approximately one second apart of the flow of a fluid with a 
stable density gradient through a contraction. (The position of minimum width is at 
19.75 inches on the scale.) The withdrawal slit is on the bottom of the tunnel at a scale 
distance of 11 in. 

WOOD (Facing p .  224) 
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FIGURE 7. Photopaphs taken a t  approximately two seconds apart of the flow of a two 
fluid system through a contraction. (The position of minimum width is a t  19.75 in. on 
the scale.) The withdrawal slit is on the bottom of the tunnel at  a scale distance of 11 in. 

WOOD 


